IntelliInspect

Real-Time Predictive Quality Control - Software Architecture

Frontend Tier
Backend Tier
ML Tier
Data Layer
Docker Container
USER FRONTEND BACKEND ML SERVICE DATA LAYER 👤 User 🐳 Docker Container Nginx Proxy Server :4200 Angular Frontend UI v18+ Static Assets 🐳 Docker Container ASP.NET Core API Orchestration Layer Auth • Proxy • JWT :5000 🐳 Docker Container FastAPI ML Service Python 3.13 • XGBoost Training • Simulation :8000 🐳 Container Redis Cache File System Docker Volumes data_store/ models/ Parquet • XGBoost HTTP/HTTPS Assets API Calls /api/* REST API WebSocket Session Data Persist Models API Endpoints: /api/Auth/login /api/Data/upload-chunk /api/Data/finish-upload /api/Model/train /api/Model/simulation-ws ML Endpoints: /csv/upload-chunk /csv/finish-upload /csv/validate-ranges /csv/train /csv/simulation-ws 🔗 Docker Network: abb-network Workflow Steps: 1. Upload Dataset (Chunked) 2. Configure Date Ranges 3. Train XGBoost Model 4. Real-Time Simulation Technology Stack: • Angular v18+ • ASP.NET Core 8 • Python 3.13 + FastAPI • Redis + File Storage • Docker + Compose Data Formats: • CSV Upload (2.5GB max) • Parquet Processing • XGBoost Models • Real-time JSON streams